Annual Project Progress Report

Project title:	Energy Efficiency and Renewable Energy for Sustainable Water Management in Turkmenistan
Award ID:	00080840
Project ID:	00090400
Implementing partner:	State Committee on Water Management of Turkmenistan
Period covered in this report:	January – December 2019
Date of last Annual Report:	10 January 2019
Date of the last Project Board meeting:	2 October 2019
Date of last Quality Assurance and rating:	1 August 2019 (PIR). Overall Project Rating: Satisfactory

1. Project Performance

a) Please state the expected Output of the Project, set indicators and corresponding CP Outcome (as per project document/AWP):

<u>COMPONENT 1</u>: Technology transfer and knowledge development in support of innovation in EE water management and SLM in agriculture

OUTPUT 1.1: Technology proving site and educational platform for low-water irrigation and SLM in agricultural croplands developed and implemented

Output indicators 1.1.

- Reduction of water used for specific soil types
- Normalised energy consumption reduced compared with average values for similar soil types
- Area of land protected or reclaimed from salinisation as a result of demonstration projects

Output targets 1.1.

• Demonstration project achieves comparable yields with 40-50 percent less irrigation water consumption than specified by norms.

a) Were the indicators and output achieved? Yes ■ No □ Partially □

b) If no or partially, please explain why?

Second year of cultivation reconfirmed significant positive outcomes of low-water irrigation systems tested at demonstration site. Yield and water consumption figures vary by crop types and irrigation technologies used. Crops harvested with drip and sprinkler irrigation consumed in average over 60% less water for unit of product if compared with traditional furrow irrigation.

- Normalized energy consumption reduced by 30 percent relative to similar sites.
- a) Were the indicators and output achieved? Yes No No Partially
- b) If no or partially, please explain why?

Based on the results of the second year of field tests at Geokdepe demonstration site, application of lowwater irrigation systems along with water saving piping system and energy saving pumping equipment reduced by around 70 percent normalized energy consumption relative to similar sites with traditional types of irrigation and infrastructure.

• 300 ha of land protected or reclaimed from salinisation as a result of demonstration projects

a) Were the indicators and output achieved? Yes □ No □ Partially ■

b) If no or partially, please explain why?

Based on the collected soil samples, Geokdepe site soils are classified from slightly and moderately saline (about 5%) to strongly and very strongly saline (remaining 95%). The project took certain measures to combat salinization at Geokdepe 145 ha plot through improvements in drainage canals in 2016, construction of piped irrigation network in 2017, construction of low-water irrigation systems and planting some crops irrigated with efficient irrigation technologies in 2018. The project experts also provide advisory support and trainings to local farmers working at research site and other neighbouring farms on efficient water use and SLM techniques. All these activities will contribute to remediation of lands from salinization. Land rehabilitation and salinity reduction process normally takes several years, so project will be monitoring salinity level throughout the project lifetime.

OUTPUT 1.2: Audits and servicing of pumps of various sizes in both interdistrict water networks and on farms in all velayats of Turkmenistan

Output indicator 1.2. Number of pump audits completed by project (total and diesel pumps) and energy saving achieved by replacement and/or fixing of old pumps

Output targets 1.2:

• At least 100 pump audits completed by project, including audits of 25 diesel pumps

a) Were the indicators and output achieved?	Yes 🗖	No□	Partially 🗆
---	-------	-----	-------------

b) If no or partially, please explain why?

Project experts in close coordination with and assistance of Ministry of Agriculture and Water Economy conducted audit of efficiency and energy consumption of 121 pumps including 44 diesel and 77 electric pumps in 2017. International experts estimated old pumps to be around 30-35% less efficient compared to the nominal design efficiencies.

• 20 percent energy saving achieved by replacement and/or fixing of old pumps

a) Were the indicators and output achieved? Yes ■ No□ Partially □

b) If no or partially, please explain why?

Based on the recommendations of international consultants on energy audit of pumps and in consultation with key national partner, the project replaced 5 physically worn and technologically obsolete pumps by brand new energy efficient ones in 2019. New pumps will go through audit to identify direct energy savings and prepare recommendations for the government for replication via state or private investments. Based on the average energy specifications of baseline pump-sets (about 100 kW) and new pumps (40 kW), it is expected to achieve over 50% energy saving.

OUTPUT 1.3: Renewable-energy applications of water pumping and purification in remote pasture areas

Output indicator 1.3. Number of people directly benefiting from measures on renewable-energy water supply in remote locations

Output target 1.3.: 1100 people directly benefiting from measures on renewable-energy water supply in remote locations

a) Were the indicators and output achieved? Yes ■ No □ Partially □

b) If no or partially, please explain why?

The project completed installation of photovoltaic systems (PV) for water pumping and purification in the villages of Byori, Yel and Bashkak, Akhal velayat with total number of residents over 1200 people.

<u>COMPONENT 2</u>: Scaling-up investment in improved water management infrastructure to reduce water losses, energy use, and land degradation

OUTPUT 2.1: Installation of pipeline and/or channel lining for municipal water supply in Kaakhka, replacing unlined channels and wells, with documentation of results and presentation of recommendations and cost analysis for replication

Output indicators 2.1.

- Reduction in water loss between withdrawal and entrance point of the Kaakhka town Water Treatment facility
- Direct energy savings due to decommissioning of up to 41 wells
- Number of similar projects initiated in in other similar (or mountainous areas) districts of Akhal and Balkan velayats of Turkmenistan

Output targets 2.1.

• Less than 5 percent of water is lost between withdrawal and end use in Kaakhka.

a) Were the indicators and output achieved? Yes ■ No□ Partially □

15km long water supply pipeline for the Kaahkha district successfully launched in 2018. It practically eliminated water loss between withdrawal and water treatment facilities.

• Water supply reliability is increased, while 41 wells can be decommissioned. Direct energy savings of 486 MWh per year, and reduction of associated GHG emissions by 240 tonnes.

a) Were the indicators and output achieved? Yes ■ No□ Partially □

Operation of the new gravity-driven water supply system since April 2018 has shown that decommissioning of the entire set of around 40 well pumps, that had been supplying the town with water, is not possible due to variable water availability in the river that the new system draws water from. During low-water levels in the river (mostly Summer months), part of the well pumps needs to be kept running to ensure that the town gets sufficient water.

Original target set for this activity in the approved project document was 11,250 tCO2, which was to be generated through complete decommissioning of 41 electric pumps with average rated capacity of 1.5 kW during the project lifetime. Since the actual average capacity of the well pumps appears to be substantially larger (9.5 kW) and with half of pumps remaining in operation on average across the year,

the resulting estimated GHG mitigation impact appears to be larger than the originally targeted in the project document. Thus, based on the calculations of International Expert on GHG emission reduction, Kaahka water pipeline result in annual energy savings of about 1000 MWh, and reduction of associated GHG emissions by 785 tCO2/year.

- At least 1 similar project initiated in other similar (or mountainous areas) districts of Akhal and Balkan velayats of Turkmenistan.
- a) Were the indicators and output achieved? Yes □ No□ Partially ■
- b) If no or partially, please explain why?

Preliminary estimates display up to 50% of water economy, with lifetime direct GHG emission reductions from operation of the combined water supply system in Kaakhka town are anticipated at 15,694 tCO2. Given its high replication potential in the country, a dialogue with the government is now underway to upscale this water-energy nexus effect.

OUTPUT 2.2: Lining of interdistrict canals for reduction of water losses and land salinization, including various technologies

Output indicator 2.2.

- Number of production lines established (from at least 3 potential options) to produce materials for modern canal linings and pipes
- Kilometres of canals newly lined

Output target 2.2:

• Testing of at least three types of materials for canal linings and pipes. Initiation of mass production of new materials and/or cost reduction by 20 percent of mass-producing existing materials, involving at least two types of products.

a) Were the indicators and output achieved?	Yes 🗆	No 🗆	Partially
---	-------	------	-----------

b) If no or partially, please explain why?

Based on the recommendations of National and International Experts in Irrigation Canals, the project started procurement of materials and equipment for initiation of production of two lining materials. The forms for production of pre-cast hexagonal concrete slabs were already purchased and supplied to Concrete Plant of State Water Committee, the project's key national partner. Tender on procurement, supply and installation of an extrusion line to produce high-density polyethylene (HDPE) film/membrane is under evaluation now. The project is also planning to hire IC Specialist on Polymers and Extrusion who will guide and provide technical support to project team during the establishment of production of polymer materials at the plant.

 Domestic production and installation expanded by 50 percent for at least two types of technologies for canal linings, pipelines, or other materials to reduce losses of water in transit. New lining of at least 400 km of canals. Reduction of water losses from newly lined canals by more than 50 percent.

a) Were the indicators and output achieved?	Yes 🗆	No 🔳	Partially \Box
b) If no or partially, please explain why?			

The project plans to establish domestic production of lining materials by the end of 2020. Lining of irrigation canals with the new materials may happen in 2021 the earliest.

<u>COMPONENT 3:</u> Planning and capacity-building at the regional and local levels, plus evaluation and compilation of lessons learned

OUTPUT 3.1: Technology Action Plans, including consideration of SLM, developed and implemented at the regional and local levels

Output indicators 3.1. Number of regional Integrated Water Distribution Plans developed and formally submitted for approval

Output targets 3.1. At least 3 velayat Integrated Water Distribution Plans developed and submitted for approval, recommendations are developed for other 2 velayats (Lebap and Balkan)

a) Were the indicators and output achieved? Yes □ No □ Partially ■

b) If no or partially, please explain why?

The project developed methodology on development of inter-farm water use plans and submitted to relevant agencies, Water Committee and Agriculture Ministry, for their feedback in the end of 2019. The project plans to test the methodology on the farms of selected private farmers and district-level water agencies. The outcome of these activities will be used for further works on development of integrated regional sustainable water management plans with consideration of SLM at the level of etraps (districts). Furthermore, initial results of low-water irrigation demonstrations complemented with land management techniques at Geokdepe green polygon can serve as foundation for development of Water Distribution Plans with proven water and land management practices.

OUTPUT 3.2: Education and direct training provided to water-management system designers, local water management staff and farmers in all regions of Turkmenistan on pump maintenance, irrigation, and other aspects of efficient water management and SLM

Output indicators 3.2.

- Key stakeholders/institutions with relevant mandates involved/trained jointly by the Project
- 90% positive feedback from training participants

Output target 3.2. Expanded training delivered annually in all five velayats on integrated water management, to a total of 100 specialists and 300 farmers by the end of the project period

a) Were the indicators and output achieved? Yes ■ No □ Partially □

b) If no or partially, please explain why?

Over 280 national specialists representing State Water Committee, Ministry of Agriculture and Nature Protection, Water Design Institute and farmers have been trained locally and abroad since the beginning of the project in various topics related to rational water management, energy efficient irrigation techniques, pump maintenance and SLM. Positive feedback rate from training participants is around 93%. Series of local and international trainings focused on low-water irrigation technologies, energy efficient pump operation, canal seepage control and various aspects of SLM will be arranged in 2020 for nearly 100 national water and agriculture experts and farmers.

OUTPUT 3.3: Project evaluation and compilation of lessons learned No indicators and targets are specified in RRF for the Output 3.3 in the project document. a) Were the indicators and output achieved? Yes 🗆 No□ Partially b) If no or partially, please explain why? Mid-Term evaluation took place in mid-2018. The project progress was recognized and delays in project realization were noted with useful recommendations on further project implementation. The project experts carry out site-specific technical evaluations of energy savings, water savings and land melioration under specific outputs. The project also conducts regular evaluation of GHG emission reduction from the pilot projects. GHG impact will be estimated and reported accordingly. Lessons learned are continuosly documented by project experts and discussed at meetings with project stakeholders. COMPONENT 4: National policy and regulatory framework established for integrated water resource management OUTPUT 4.1: Standards and regulations for pump performance and maintenance adopted and enforced Output indicator 4.1: Number of regulations, norms, and/or standards developed and adopted in support of the new Water Code **Output target 4.1:** At least 3 acts related to pump audits, crop-specific irrigation norms, and water/energy saving practices (incl. irrigation infrastructure) to lead to GHG emission reduction developed and adopted in support of the new Water Code. a) Were the indicators and output achieved? Yes 🗆 No□ Partially b) If no or partially, please explain why? Based on detailed inventory of legislation, as well as mandates of relevant governmental institution in the field of energy efficiency, irrigation water use, GHG emission reduction developed in 2016, in 2017 the project developed four regulatory acts to support Water Code, including (i) operational regulations for pump stations; (ii) regulation for scheduled preventive maintenance and repair of water systems and facilities; (iii) technical regulations of irrigation infrastructure; and (iv) technical regulations of drainage infrastructure. Upon receipt of comments and inputs from state agencies, the project updated the sub-legislative acts and submitted to State Committee on Water Management for approval in 2019. Besides, the project submitted 1st draft of SNT (national construction norms and standards) on Landreclamation systems and facilities to the Ministry of Construction. The Construction Ministry will consult with respective state agencies before submission of the SNT to the Parliament. New building code if approved will allow national organizations to use modern norms and standards in the design and construction of water infrastructure facilities incl. energy efficient pump units, drip and sprinkler irrigation systems to increase rational use of water and promote reduction of GHG emission.

Furthermore, the project plans to develop crop-specific irrigation norms based on results of field research works started in Geokdepe site in 2018. However, testing should be carried out for at least

three years to allow project experts to develop evidence-based recommendations on revision of irrigation norms of certain crops.

OUTPUT 4.2: Policy framework for measuring water consumption, monitoring energy consumption in the water sector, and making the transition to end-use tariffs developed and adopted

No indicators and targets are specified in RRF for the Output 4.2 in the project document.

In 2018 the project initiated discussions among water sector experts on approaches to develop policy framework for metering water consumption, monitoring energy consumption in the water sector, and transition to end-use tariffs. Work on development of regional Integrated Water Distribution Plans (Output 3.1) will also contribute to creation of enabling conditions for transition to end-use tariff system.

The project established water metering systems at all of the project pilot sites.

OUTPUT 4.3: Policy and state budget framework for widespread deployment of efficiency improvements to irrigation and water infrastructure adopted and implemented

Output indicator 4.3: There is a formal commitment of the government to allocate resources for demonstrated by the project technologies (e.g. inclusion in state-funded programmes and budgets) (Yes/No).

Output target 4.3: Yes

a) Were the indicators and output achieved? Yes ■ No □ Partially □

b) If no or partially, please explain why?

In 2019 the government adopted the National Program for the Development of Agriculture of Turkmenistan for 2019-2025, which, in addition to traditional agricultural activities, also envisages rational use of water resources, improving land reclamation techniques and other issues to improve the country's irrigated agriculture sector in the medium term. It is planned to spend 6.8 billion manat (over 1.9 billion US dollars) for the implementation of this program, mainly from the state budget of the country.

OUTPUT 4.4. Administrative reform for implementation of integrated water resource management and sustainable land management adopted and implemented

Output indicator 4.4: Programme for water measurement is developed and made operational at focus demonstrational sites.

Output target 4.4: Programme for water measurement is developed and made operational at focus demonstrational sites (Yes/No)

a) Were the indicators and output achieved? Yes ■ No □ Partially □

b) If no or partially, please explain why?

Baseline data collection program for the Kaahka pilot project was prepared and initiated in 2016 through installation of water measuring devices at the source and lower stream of the open-water channel that supply drinking water to the town of Kaahka. These meters enabled the project to accurately measure and calculate the average monthly water flow and supported final decision on pipeline construction. Water metering was further improved with construction of water distribution point as part of the Kaahka water pipeline project completed in April 2018.

Testing of water measurement devices at Geokdepe demonstration site started in 2017 when piped irrigation network was built. Additional water meters were installed along with drip and sprinkler irrigation systems in June 2018. Collection of water consumption figures intensified with planting of various crops irrigated with water saving types.

In 2018 EERE project specialists discussed with national water, agriculture and legal experts potential ways of improvement/revision of agency roles for IWRM. Preliminary agreement was reached about partnership of EERE project with SCRL project and Regional Environmental Center for Central Asia (CAREC) that is planning to work on promotion of IWRM principles within its joint USAID-CAREC project "Water, education and cooperation". In November 2019 UNDP Turkmenistan signed a three-year MoU with CAREC to strengthen synergetic cooperation between UNDP and CAREC and maximize impact in a number of areas such as policy and legal framework improvement, technology and knowledge transfer, building new skills and others.

2. Progress Reporting

a) Please summarize the main achievements during the project cycle:

The project has delivered four major strategic milestones including:

- 1. Firstly, in April 2018 a gravity-flow water pipeline was launched for the town of Kaakhka to save water by prevention of ground water losses, shut down the operation of around 40 water pumps and reduce associated GHG emissions. The initiative has both mitigation and adaptation effect. Given that the country has a number of other settlements in similar conditions, potential for replication is high. The currently ongoing monitoring of the new pipe operation will serve as grounds for entering into a dialogue with national counterparts with regard to possible upscale of this measure.
- 2. Secondly, a 145 ha research site was launched in early June 2018, with various irrigation systems and infrastructure up and running. The project has started the process of research and analysis on how these irrigation systems interact with various crop types. This multi-year process will be documented, with findings to be presented to Government for strategic adjustments of the countries agricultural development, including changes to be proposed in the educational sector.
- 3. Thirdly, the project replaced five obsolete low-efficient pumps used for water supply for irrigation purposes. Newly installed modern energy efficient pumps increased efficiency and reliability of water supply in specific rural areas. It also reduced energy consumption and associated GHG emission due to lower energy consumption of new pumps (40 kWt) compared to replaced ones (over 100 kWt) with the same productivity. It is expected that this major exercise will further lead into GHG reductions from replications in the water pumps sectors, which currently occupies one of the leading places in emissions.
- 4. The project also promotes innovations such as the use of renewable energy for water pumping and treatment in remote areas for household needs. In the end of 2019 the project completed installation of photovoltaic systems (PV) for water pumping and purification in the villages of Byori, Yel and Bashkak, Akhal velayat totalling over 1200 residents. It is envisaged that it will improve water availability in areas with highly limited access to water and reduce associated GHG emissions from diesel fuel used for pumps and household energy supply. It will also contribute to socio-economic growth of targeted communities due to significant money savings from free of charge solar energy versus expenses for diesel fuel and its delivery to remote villages, regular maintenance and replacement of diesel power generators.

The project developed four regulatory acts to support Water Code, including (i) operational regulations for pump stations; (ii) regulation for scheduled preventive maintenance and repair of water systems and facilities; (iii) technical regulations of irrigation infrastructure; and (iv) technical regulations of drainage infrastructure. It is expected that these regulations when approved by the State Water Committee will improve efficiency of use of water infrastructure and contribute to GHG reduction in water sector.

The project contributed substantially to the work of Water Design Institute on update of SNT (national construction norms and standards) on Land-reclamation systems and facilities to the Ministry of Construction. Water Design Institute submitted 1st draft of SNT to State Water Committee for further transfer to the Construction Ministry. New building code if approved will allow national organizations to use modern norms and standards in the design and construction of water infrastructure facilities incl. energy efficient pump units, drip and sprinkler irrigation systems to increase rational use of water and promote reduction of GHG emission.

The project demonstrated benefits of laser land levelling technology to water specialists and farmers when up to 30% water saving and 25% yield increase is attainable. As a result, in 2019 Ministry of Agriculture and Nature Protection purchased first batch of 40 units of laser land levelling equipment. The project conducted training for operators to avoid equipment breakdowns from improper operation and excessive fuel consumption.

With substantial facilitation of the project, UNDP Turkmenistan signed a three-year MoU with CAREC, international organization successfully promoting issues of environmental management and sustainable development in the Central Asia region. Synergetic cooperation between UNDP and CAREC will maximize impact in a number of areas such as policy and legal framework development, technology and knowledge transfer, building new skills and other. Besides, the project conducted negotiations with German company KSB specialising in water pumping technologies and reached preliminary agreement with the company to sign MoU with UNDP Turkmenistan in Jan 2020 with intention to install KSB equipment at various project sites to demonstrate energy efficient water metering and pumping including use of renewables.

3. Project Risks and Issues

The project Risk Log is maintained throughout the project implementation to capture potential risks to the project and associated measures to mitigate risk. The Project Manager shall maintain and update the Risk Log and ensure that risks are identified, communicated and managed effectively.

#	Description of risk	Type and category	Risk management actions	Current situation
1.	Government commits funds	Political and	Even though some pilot project	Risk is
	to water conservation and	financial	activities might be replicated under the	increasing
	energy conservation at a		private financing (e.g. EE irrigation), the	due to
	level insufficient to achieve		major part has to be financed by the	worsening
	significant scaled-up		State (Central or Regional) budget,	economic
	effects. Due to the general		especially aimed at increase of EE at the	situation in

A number of potential risks are listed below.

	economic situation in the		pumping stations. Therefore, general	the
	country, not enough		economic situation in the country is of	country.
	budgetary funds might be	crucial importance for scaling-un similar		country.
	allocated for replication of		activities. External factors, e.g. decrease	
	pilot project activities.		of prices (and/or sales) on natural gas	
	Besides, growing difference		and oil worldwide, may lead to the	
	between the official and		decrease of the State budget of	
	market exchange rates may		Turkmenistan and consequently there	
	hamner private		would be less funding available for the	
	investments in sustainable		enhancing sustainable energy and	
	energy and water		water management practices	
	technologies		(installation of FE and RE technologies)	
			To mitigate this risk the FERE project	
			will implement comprehensive	
			Monitoring and Evaluation (M&E) of the	
			nilot (demo) projects and communicate	
			its results to all stakeholders and	
			potential investors/beneficiaries The	
			focus of the materials prepared for this	
			purpose, will be on energy savings	
			achieved as well as cost-efficiency. In	
			case of proper awareness raising /	
			marketing campaign, sustainable	
			irrigation will be put in the high	
			priorities and its financing secured.	
			Furthermore, tightening of foreign	
			exchange regime by national financial	
			authorities led to occurrence of black	
			market rate for foreign currency which	
			is now five times higher than official	
			rate. Potential private investors in these	
			technologies (mostly farmers), which	
			have their financial resources in	
			national currency, likely have to	
			purchase the foreign currency at the	
			market rates, that in turn, may make	
			such investments financially not	
			feasible.	
			To mitigate this risk, the EERE project	
			will conduct detailed financial analysis	
			including sensitivity analysis and	
			promote only those technologies with	
			high IRR and NPV.	
2.	Farmers and other	Institutional	Farmers already do widely understand	No change
	stakeholders resist change,		the importance of water conservation,	
	complicating efforts of		and have participated enthusiastically	
	project to introduce new		in past projects of international	
	technology, practices, and		organizations. This project specifically	

	norms for low-water		seeks to reduce risk of stakeholder	
	irrigation		resistance through targeted outreach	
	-		and training. Incentives or mandates	
			may be included in policy efforts under	
			Component 4.	
3.	Demonstration projects	Technological	Water management projects require	Completed.
	need to be significantly	and	careful attention to many specific	The project
	changed because of	Environmental	technical and environmental factors.	successfully
	unforeseen local technical		including water sources: end uses:	realized 4
	or environmental		intervening terrain: and other	nilots The
	conditions		conditions Each demonstration	preparatory
			project will undergo thorough	work on
			assessment of cost technical	last nilot
			feasibility expected benefits and	nroject
			environmental and social impact	shows the
			Design of projects will be adjusted as	project will
			needed to account for conditions	he
			identified during these assessments	successful
			Timetables for demonstration projects	in its
			will have some flexibility built into	realization
			them to allow for needed	too
			adjustments	100.
1	Poplication of	Institutional	Efficient irrigation technology is under	Completed
4.	demonstration project	and aconomic	development in Turkmenisten, and	Completed
	tochnology and practices		scaling up domestic production is a	
	lags because of insufficient		priority of the Government Canal	
	ags because of insufficient		lining tochoology is likely to be rather	
	availability of materials and		simple and not export dependent	
	products		Domonstration projects will omphasize	
			use of technologies and materials that	
			are accessible in Turkmenistan. The	
			project will assess the cost and supply	
			flows of imported products such as	
			numps before recommending them for	
			wide use	
5	Reduction in end-use water	Technical	Reduction in end-use water	Completed
5.	consumption and increased	recifical	consumption needs to be accurately	completed
	nump performance does		forecasted measured and then	
	not automatically lead to		coordinated with unstream water	
	energy savings and avoided		management and numning schedules	
	emissions		This integration is a major emphasis of	
			the project	
6	Climate change –	Environmental	The Government of Turkmenistan	No change
0.	specifically increased		recognizes that as a result of climate	NO CHAINE
	average temperatures and		change water run-off provided by its	
	reduced precipitation -		major river Amu-Daria may further	
	evacerbates problems of		decrease (i.e. 65-75% of the total	
	water scarcity and land		average amount) and therefore water	
			average amount and therefore water	
		1	saving programmes in agricultural	

	degradation, muting the benefits of the project		sector are among the top of national priorities. The proposed project will help alleviate the risk of water shortage by introducing and promoting improvements in water and energy efficiency and an integrated water- energy management approach in irrigation thus leveraging win-win opportunities for climate change mitigation and adaptation.	
7.	Complexity and multi- dimensional nature of the project, which may lead to non or under delivery of some of the planned objectives and goals	Organisational	Mobilisation of stakeholders and regular engagement with all partners. Frequent engagement of project board and National Project Coordinator	Reducing
8.	Delays in implementation of planned activities due to lengthy internal decision- making process resulting non-delivery	Operational and Organisational	Bi-weekly meetings and discussions with the Senior Management	Completed. There were some delays in the beginning, but project worked through all challenges and reaching delivery targets
9.	Lack of adequate support from the National Partners	Operational and Strategic	Efforts by the SM in raising the issues during high level meetings and exchange of NVs, and discussions of project team members with the counterparts	Reducing. This risk has been significantly reduced after the designation of a new NPC

The project Issue Log is maintained throughout the project implementation to capture potential issues to the project and associated response measures. The Project Manager shall maintain and update the Issue Log and ensure that issues are identified, communicated and managed effectively.

A number of potential issues are listed below.

Description of issueType and categoryResponse / CountermeasuresCurrent situation
--

Restrictions in official currency transactions and consequent occurrence of dual/black market exchange rate. Kaahka pipeline handover to the Government is delaying	Financial Regulatory	This is an external factor that neither UNDP nor Project team can have an impact on. The only countermeasure that can be taken is wider distribution of tender announcements among foreign companies. As foreign companies can be paid in hard currency, it will mitigate negative impact of black market exchange rate. Senior Management raised the issue on several occasions (the latest was the meeting with Minister of Agriculture and Water Economy in	No change Water Management Dept of Kaahka
		Dec 2018) with the high rank Government authorities and was promised to get resolution soon	accepted water pipeline
Project registration extension is overdue	Regulatory	Senior Management raised the issue on several occasions (the latest was the meeting with Minister of Agriculture and Water Economy in Dec 2018) with the high rank Government authorities and was promised to get resolution soon	No change, but expected to reduce
Delay in project registration extension affected some project activities	Regulatory	The process of handover of some major project assets (tractor, irrigation infrastructure in Geokdepe and some others) is suspended due to delay in receiving of project registration certificate. Senior management raised this issue at high level meeting with the Government.	No change, but expected to reduce
Some major project activities can be delayed due to requirements of the National Customs Service.	Regulatory	Customs authorities require project registration certificate for custom clearance of goods and materials purchased for project activities, otherwise cargo can be kept until submission of required document. Senior management raised this issue at high level meeting with the Government.	No change, but expected to reduce
Automatic agro- weather station does not transmit data collected at the field.	Operational	Agro-weather station installed at Geokdepe Green polygon stopped data transmission after several months of proper functioning. The project will find an expert to resolve the issue.	No change, but expected to reduce

4. Lessons learned and follow-up steps (if applicable)

-

a) Please provide the lessons learned and further steps after the project's closure.

NՉ	Lessons Learned	Follow-Up Steps
1.	Since Kaahka pipeline reduced infiltration loss nearly to zero, water savings were redirected to irrigation of around 850 ha	In addition to water and energy consumption figures monitored in Kaahka, the project will look at the

	of agricultural fields and created around 50 additional seasonal workplaces.	improvement of living conditions of residents.
2.	Key implementing partners, Ministry of Agriculture and Water Economy and its Water Design and Research Institute, most likely will not be able to do significant contributions to project activities that entail financial implications due to their weak financial standings.	The project will try to get key implementing partners involved in project activities with in-kind contributions, for instance mobilize their workers for tree planting or other field works at Geokdepe site or use their vehicles/tracks for delivery of needed products, etc.
3.	Establishment of production line of HDPE membrane requires support of international expert with multi-country experience and technical knowledge.	The project will hire International Consultant on Polymers and Extrusion with hands-on international experience
4.	The Government linked Byori village to the central power grid right after the project completed installation of photovoltaic system (PV) for water pumping.	After consultation with local authorities, the project will replace/reinstall the PV system from Byori to another remote village, so the equipment is used where really needed.
5.	Due to the low amperage in the power grid system of Koneurgench etrap Dashoguz region, modern energy efficient pump installed there does not work.	The project reached agreement with local Water Administration that they will replace/reinstall the pump to another pump station with sufficient/stable amperage level.

5. Transfer of Assets or other related matter

a) Please state on any past or future transfer of assets made within the project cycle (Attach list of equipment, cooperation frameworks with beneficiaries, etc.)

See attachment 1

6. Financial management

Budget item	Total approved in 2019 (in USD)	Expenses + commitments	Budget utilization in % to planned				
Component 1	116,655.39	262,894.85	225.36				
Component 2	909,021.83	680,262.65	74.83				

Component 3	63,995.00	59,719.45	93.32
Component 4	87,295.00	47,218.40	54.09
Project management	35,740.01	32,645.75	91.34
Total delivery in 2019	1,212,707.23	1,082,741.10	89.28
In % to total project budget	19.30	17.23	

Prepared by: ______Geldi Myradov, EERE Project Manager

Date: 30.12.2019

ASSET INFORMATION - PROJECT 00090400

PROJECT CODE	ASSET ID	PROFILE	DESCRIPTION	TAG NUMBER	SERIAL NUMBER	MODEL	LOCATION	CUSTODIAN	ACQUISITION DATE	COST	CURRENCY	Voucher ID	PO ID	FUND	DONOR
90400	00000000001	ITC	HP EliteBook 820 G2 with HPeCarePack 3Y Trv NBD NB Only HW	ITC/TKM/90400/001	5CG5352N6X	elitebook 820 G2	WDI	G. Myradov	18.08.2015	1,233.00	USD	48370	8443	62000	10003
90400	00000000002	ITC	HP EliteBook 820 G2	ITC/TKM/90400/002	5CG5352N7C	elitebook 820 G2	WDI	A. Yazhanow	18.08.2015	1,177.00	USD	48370	8443	62000	10003
90400	00000000003	ITC	HP EliteBook 820 G2	ITC/TKM/90400/003	5CG5352N75	elitebook 820 G2	WDI	G. Hanmedov	18.08.2015	1,177.00	USD	48370	8443	62000	10003
90400	00000000004	ITC	HP UltraSlim Docking Station 2013-Euro	ITC/TKM/90400/004	5CG521ZNB3	cs1552	WDI	G. Myradov	18.08.2015	125.00	USD	48370	8443	62000	10003
90400	00000000005	ITC	HP UltraSlim Docking Station 2013-Euro	ITC/TKM/90400/005	5CG521XZTL	cs1552	WDI	A. Yazhanow	18.08.2015	125.00	USD	48370	8443	62000	10003
90400	00000000006	ITC	HP UltraSlim Docking Station 2013-Euro	ITC/TKM/90400/006	5CG522XSHV	cs1552	WDI	G. Hanmedov	18.08.2015	125.00	USD	48370	8443	62000	10003
90400	00000000007	ITC	HP Business Top Load Case	ITC/TKM/90400/007	N/A	N/A	WDI	G. Myradov	18.08.2015	18.00	USD	48370	8443	62000	10003
90400	00000000008	ITC	HP Business Top Load Case	ITC/TKM/90400/008	N/A	N/A	WDI	A. Yazhanow	18.08.2015	18.00	USD	48370	8443	62000	10003
90400	00000000009	ITC	HP Business Top Load Case	ITC/TKM/90400/009	N/A	N/A	WDI	G. Hanmedov	18.08.2015	18.00	USD	48370	8443	62000	10003
90400	00000000010	ITC	HP EliteDisplay E241i 24-in LED IPS Monitor	ITC/TKM/90400/010	CN45230T0S	E241i	WDI	G. Myradov	18.08.2015	285.00	USD	48370	8443	62000	10003
90400	00000000011	ITC	HP EliteDisplay E241i 24-in LED IPS Monitor	ITC/TKM/90400/011	CN45230SZR	E241i	WDI	A. Yazhanow	18.08.2015	285.00	USD	48370	8443	62000	10003
90400	00000000012	ITC	HP EliteDisplay E241i 24-in LED IPS Monitor	ITC/TKM/90400/012	CN45230SZW	E241i	WDI	G. Hanmedov	18.08.2015	285.00	USD	48370	8443	62000	10003
90400	00000000013	ITC	HP LASERJET PRO 400MFP printer + COPIER + FAX	ITC/TKM/90400/013	CNF8H7449F	laserjet M425DN	WDI	project office	18.08.2015	408.00	USD	48370	8443	62000	10003
90400	00000000014	ΙΤС	Meraki CISCO Security Appliance+ 3yr advanced security license) Meraki MS220- 8 Switch+3YR Support	ITC/TKM/90400/014	S/N:Q2MN-KZDP-8K6F S/N:Q2GP+YQCV+TCU7	MX64W-HW MS220-8- HW	WDI	project office	18.08.2015	1,291.20	USD	48370	8443	62000	10003
90400	00000000015	ITC	Digital camera Nikon D90 + 18-55 lens	ITC/TKM/90400/015	BODY:8494146 LENS:39238291	NKR-D90(B)	WDI	project office	20/11/2015	4,945.00	тмт	48336	8492	62000	10003
90400	00000000016	ITC	Projector InFocus IN124STa (1924x768)	ITC/TKM/90400/016	BNGB43600039	IN124STa	WDI	project office	20/11/2015	3,325.00	TMT	48336	8492	62000	10003
90400	00000000017	ITC	Case for digital camera Nikon	ITC/TKM/90400/017	N/A	7303(PS)	WDI	project office	20/11/2015	150.00	TMT	48336	8492	62000	10003
90400	00000000018	ITC	SD card 8 GB for digital camera	ITC/TKM/90400/018	JM94731-901.A00LF	SDA10/16GB	WDI	project office	20/11/2015	80.00	ТМТ	48336	8492	62000	10003
90400	00000000019	ITC	Projector screen Anchor tripod	ITC/TKM/90400/019	YM1352363	ANTRS200	WDI	project office	20/11/2015	420.00	TMT	48336	8492	62000	10003
90400	00000000020	ITC	Mobile Phone Nokia 6303	ITC/TKM/90400/020	IMEI: 359333036578799	Nokia 6303c	WDI	project office	20/11/2015	280.00	TMT	48336	8492	62000	10003
90400	00000000021	ITC	Mobile Phone Nokia 6303	ITC/TKM/90400/021		Nokia 6303c	WDI	A. Yazhanow	20/11/2015	280.00	TMT	48336	8492	62000	10003
90400	00000000022	ITC	Mobile Phone HuaweiG630	ITC/TKM/90400/022	IMEI: 867256027769595 S/N:H3L7S15902003484	G630-U10	WDI	M. Shaharov	20/11/2015	560.00	TMT	48336	8492	62000	10003

90400	00000000023	ITC	Mobile Phone HuaweiG630	ITC/TKM/90400/023	S/N:H3L7S15818001815	G630-U10	WDI	K.Bayliev	20/11/2015	560.00	TMT	48336	8492	62000	10003	DISCARD
90400	00000000024	ITC	SD card 8 GB for mobile phone	ITC/TKM/90400/024			WDI	M. Shaharov	20/11/2015	45.00	тмт	48336	8492	62000	10003	
90400	00000000025	ITC	SD card 8 GB for mobile phone	ITC/TKM/90400/025			WDI	K.Bayliev	20/11/2015	45.00	ТМТ	48336	8492	62000	10003	
90400	00000000026	ITC	Charger used in vehicle	ITC/TKM/90400/026			WDI	Project vehicle	20/11/2015	50.00	TMT	48336	8492	62000	10003	
90400	00000000027	ITC	Charger used in vehicle	ITC/TKM/90400/027			WDI	Project vehicle	20/11/2015	50.00	TMT	48336	8492	62000	10003	
90400	00000000028	FURN	Filing cabinet semi-	FURN/TKM/90400/001	FCM 8053	FILE CABINET	WDI	G. Myradov	10/11/2015	749.00	TMT	48355	8489	62000	10003	
90400	00000000029	FURN	Filing cabinet semi-	FURN/TKM/90400/002	FCM 8053	FILE CABINET	WDI	G. Hanmedov	10/11/2015	749.00	TMT	48355	8489	62000	10003	
90400	00000000030	FURN	Filing cabinet semi-	FURN/TKM/90400/003	FCM 8053	FILE CABINET	WDI	M. Shaharov	10/11/2015	749.00	TMT	48355	8489	62000	10003	
90400	00000000031	FURN	Filing cabinet semi- open	FURN/TKM/90400/004	FCM 8053	FILE CABINET	WDI	A. Yazhanow	10/11/2015	749.00	тмт	48355	8489	62000	10003	
90400	00000000032	FURN	Rolling chair	FURN/TKM/90400/005	ROMD 40801	ROMA MANAGER	WDI	G. Myradov	10/11/2015	1,915.00	TMT	48355	8489	62000	10003	
90400	00000000033	FURN	Rolling chair	FURN/TKM/90400/006	ROMD 40801	ROMA MANAGER	WDI	G. Hanmedov	10/11/2015	1,915.00	TMT	48355	8489	62000	10003	
90400	00000000034	FURN	Rolling chair	FURN/TKM/90400/007	ROMD 40801	ROMA MANAGER	WDI	M. Shaharov	10/11/2015	1,915.00	TMT	48355	8489	62000	10003	
90400	00000000035	FURN	Rolling chair	FURN/TKM/90400/008	ROMD 40801	ROMA MANAGER	WDI	A. Yazhanow	10/11/2015	1,915.00	TMT	48355	8489	62000	10003	
90400	00000000036	FURN	Office table	FURN/TKM/90400/009	BTML 130160	BETA DESK	WDI	G. Myradov	10/11/2015	1,036.00	TMT	48355	8489	62000	10003	
90400	00000000037	FURN	Office table	FURN/TKM/90400/010	BTML 130160	BETA DESK	WDI	G. Hanmedov	10/11/2015	1,036.00	TMT	48355	8489	62000	10003	
90400	00000000038	FURN	Office table	FURN/TKM/90400/011	BTML 130160	BETA DESK	WDI	M. Shaharov	10/11/2015	1,036.00	тмт	48355	8489	62000	10003	
90400	00000000039	FURN	Office table	FURN/TKM/90400/012	BTML 130160	BETA DESK	WDI	A. Yazhanow	10/11/2015	1,036.00	тмт	48355	8489	62000	10003	
90400	00000000040	FURN	Chest of drawers	FURN/TKM/90400/013	PEM 703-E	PEDESTAL	WDI	G. Myradov	10/11/2015	424.00	тмт	48355	8489	62000	10003	
90400	00000000041	FURN	Chest of drawers	FURN/TKM/90400/014	PEM 703-E	PEDESTAL	WDI	G. Hanmedov	10/11/2015	424.00	TMT	48355	8489	62000	10003	
90400	00000000042	FURN	Chest of drawers	FURN/TKM/90400/015	PEM 703-E	PEDESTAL	WDI	M. Shaharov	10/11/2015	424.00	тмт	48355	8489	62000	10003	
90400	00000000043	FURN	Chest of drawers	FURN/TKM/90400/016	PEM 703-E	PEDESTAL	WDI	A. Yazhanow	10/11/2015	424.00	TMT	48355	8489	62000	10003	
90400	00000000044	FURN	File cabinet	FURN/TKM/90400/017	FCM 8045	FCM 8045	WDI	project office	10/11/2015	991.00	TMT	48355	8489	62000	10003	
90400	00000000045	FURN	Office bookcase	FURN/TKM/90400/018	FCM 8021	FILE CABINET	WDI	project office	10/11/2015	448.00	TMT	48662		62000	10003	
90400	00000000046	FURN	COFFEE TABLE	FURN/TKM/90400/019	EEPS 60100	EPSILON	WDI	project office	10/11/2015	616.00	TMT	48662		62000	10003	
90400	00000000047	FURN	Office chair	FURN/TKM/90400/020	EKF 30515	EKOFORM VISITOR	WDI	project office	10/11/2015	235.00	TMT	48662		62000	10003	
90400	00000000048	FURN	Office chair	FURN/TKM/90400/021	EKF 30515	EKOFORM VISITOR	WDI	project office	10/11/2015	235.00	TMT	48662		62000	10003	
90400	00000000049	FURN	Office chair	FURN/TKM/90400/022	EKF 30515	EKOFORM VISITOR	WDI	project office	10/11/2015	235.00	TMT	48662		62000	10003	
90400	00000000050	FURN	Office chair	FURN/TKM/90400/023	EKF 30515	EKOFORM VISITOR	WDI	project office	10/11/2015	235.00	TMT	48662		62000	10003	
90400	00000000051	FURN	Table for meeting	FURN/TKM/90400/024				project office		739.00	TMT	48662		62000	10003	
90400	00000000052	FURN	Metalic coat rack	FURN/TKM/90400/025	CST.175	COAT STAND	WDI	project office	09/12/2015	400.00	тмт	48662		62000	10003	
90400	00000000053	ITC	Notebook HP/17- K250CA CPU CI- 7(5500U)/RAM 8GB/HDD 1TB/VGA N- VIDIA 2GB/17.3" silver	ITC/TKM/90400/028	5CD5113VHV	ENVY 17 K250CA	WDI	M. Shaharov	24/12/2015	3,931.00	тмт	48864	N/A	62000	10003	

90400	00000000054	ITC	Bag for laptop Targus 15,4-16'', black	ITC/TKM/90400/029	N/A	CN600-61	WDI	M. Shaharov	24/12/2015	192.00	тмт	48864	N/A	62000	10003	
90400	00000000055	ITC	Printer Canon I- Sensys MF216N Laser A4 4/1B/W cart 737 + Fax + Lan	ITC/TKM/90400/030	RWB39119	MF216N	WDI	G. Myradov	24/12/2015	1,359.00	TMT	48864	N/A	62000	10003	
90400	00000000056	ITC	LCD AOC I2276VWM21.5" IPS/1920x1080/D- Sub/HDMI, black	ITC/TKM/90400/031	D23E9BA002500	I2276VWM	WDI	Geokdepe (office in field camp)	24/12/2015	571.00	TMT	48864	N/A	62000	10003	
90400	00000000057	ΙΤС	Keyboard Gigabyte KM- 7580 + Mouse Wireless	ITC/TKM/90400/032	SN144825004220	GK-KM7580	WDI	M. Shaharov	24/12/2015	241.00	тмт	48864	N/A	62000	10003	
90400	00000000058	HYME	AKIRA air conditioner	HYME/TKM/90400/001	54936-S19HEGN1	AC-S 19HEGN1	WDI	project office	17/11/2015	1,850.00	TMT	48272	N/A	62000	10003	
90400	00000000060	ITC	Megafon 4G modem	ITC/TKM/90400/034	G4PDW15701010173	M150-2	WDI	project office	16/02/2016	114.00	TMT	49176	N/A	62000	10003	
90400	00000000061	MRTV	NISSAN PATROL 4WD MOTOR TYPE: ZD30CR (2953CC DIESEL) GL 5MT LHD	MRTV/TKM/90400/001	CHASSIS № 573298, Engine № 007302N	TWSSLEFY61 UR7-HAJE	UN Building	K.Bayliev	23/02/2016	22607.54	USD	49279	8448	62000	10003	
90400	00000000062	FURN	Office Table	FURN/TKM/90400/026	EEPS60100	EPSILON	WDI	project office	03/03/2016	700.00	TMT	49287	N/A	62000	10003	
90400	00000000063	FURN	File cabinet semi-open	FURN/TKM/90400/027	SCM 8021	FILE CABINET	WDI	project office	03/03/2016	500.00	TMT	49287	N/A	62000	10003	
90400	00000000064	FURN	Metalic coat rack	FURN/TKM/90400/028	N/A	COAT STAND	WDI	project office	03/03/2016	400.00	тмт	49287	N/A	62000	10003	
90400	00000000065	FURN	Office chair	FURN/TKM/90400/029	EKF 30515	EKOFORM VISITOR	WDI	project office	03/03/2016	250.00	TMT	49287	N/A	62000	10003	
90400	00000000066	FURN	Office chair	FURN/TKM/90400/030	EKF 30515	EKOFORM VISITOR	WDI	project office	03/03/2016	250.00	TMT	49287	N/A	62000	10003	
90400	00000000071	ITC	Mobile Phone Samsung	ITC/TKM/90400/035	S/N: SM-J510FN/DS IMEI: 358786085550442	Galaxy J5 2016y	WDI	K.Bayliev	26/09/2017	2,300.00	TMT	53662	e-req 3323	62000	10003	
90400	00000000072	ITC	Notebook, E-Port Plus, 14"Case, Dell USB Optial mouse, Dell USB keyboard	ITC/TKM/90400/36	Dell Latitude E6430 3KL38W1	Dell Latitude E6430	UN Office	Ch. Taganov	28.12.2012	1,495.00	USD	38093	7764	62040	11602	Acquired from AF
90400	00000000073	ITC	Notebook, E-Port Plus, 14"Case, Dell USB Optial mouse, Dell USB keyboard	ITC/TKM/90400/37	Dell Latitude E6430 2xG38W1	Dell Latitude E6430	UN Office	UNDP, PIU office	28.12.2012	1,495.00	USD	38093	7764	62040	11602	Acquired from AF
90400	00000000074	ITC	Notebook, E-Port Plus, 14"Case, Dell USB Optial mouse, Dell USB keyboard	ITC/TKM/90400/38	Dell Latitude E6430 36G8JV1	Dell Latitude E6430	UN Office	UNDP, PIU office	22.11.2012	1,495.00	USD	37399	7729	62040	11602	Acquired from AF
90400	00000000075	ITC	Monitor Dell 22 P2213 black LCD monitor widescreen	ITC/TKM/90400/39	CNOY57VF7444528BB3F S	Dell 22" P2213	UN Office	UNDP, PIU office	22.11.2012	164.00	USD	37399	7729	62040	11602	Acquired from AF
90400	00000000076	ITC	APC Power-Saving Back UPS 230V, 540W	ITC/TKM/90400/40	3B129X00669	Pro 900, 230V, 540W	UN Office	UNDP, PIU office	22.11.2012	225.00	USD	37399	7729	62040	11602	Acquired from AF
90400	00000000077	ITC	Samsung A5 mobile phone	ITC/TKM/90400/41	R58J155XJTM	SM- A510F/DS	WDI	project office	08/06/2017	2,083.00	тмт	52936	8924	62000	10003	

- A Projcet Code
- B This is the Internal Reference used for the project ex. 000000000001
- C This is the general category e.g. Furniture, Vehicles etc in words ITC for ITC equipment, MRTV for vehicles, HYME for heavy Machinery, FURN for furniture
- D This is the detailed description of the asset
- E This is the asset tag as per laid down tagging convention e.g. ITC/TKM/90400/001 for a ITC item
- F This is the serial number, normally available for electrical equipment and registration number for vehicles
- G This is the asset Model as indicated in Invoice
- H This is the Place where the asset is based and can be physically located TKM/ASB/xxxxxxxx
- I Person who is responsible for assets
- J The date asset is received
- K The cost as per Invoice and payment details
- L This is the Currency used in the cost detail, if various currencies used try to standardize the register into one currency by conversions
- M Voucher ID
- N PO ID
- O This is the funds used to purchase the asset e.g. UNDP, etc
- P This is the donor used to purchase the asset e.g. UNDP, ECHO etc.